SPECIMEN MATERIAL

A-level PHYSICS (7408/3BB)

Paper 3 – Section B (Medical Physics)

Specimen 2014 Morning Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

• The maximum mark for this section is 35.

Please write clearly, in block capitals, to allow character computer recognition.				
Centre number	Candidate number			
Surname				
Forename(s)				
Candidate signature				

Section B		
Answer all questions in this section.		
0 1 . 1	State what is meant by the principal focus and the power of a converging lens	s. [2 marks]
0 1 . 2	Complete the ray diagram below to show the formation of an image of a real oby a diverging lens. Label the image clearly.	object O [2 marks]
	↑	
	FO	
	diverging lens	
0 1 . 3	State the defect of vision that would be corrected using a diverging lens.	[1 mark]

0 1 . 4	A diverging lens of focal length $-0.33~\mathrm{m}$ is used to view a real object placed 0.25 m from the lens.
	Calculate the distance from the lens to the image. [2 marks]
	distance from lens to image = m
0 1 . 5	Two point sources of light are viewed by a normal eye and their images are formed at the fovea.
	State, in terms of the active receptors, the conditions necessary for two separate images to be seen. [2 marks]

0	2 .	1	Sound waves are incident on a human ear.	
			Describe how the frequency and amplitude of the vibrations change as the wave is transmitted through the ear to the fluid in the inner ear. [2 ma	
0	2 .	2	Explain how the components of the ear act to amplify the pressure changes due to sound wave.	
			[3 ma	<u></u>
0	2 .	3	A sound intensity meter, set to the dB scale, is placed near to a source of sound. Intensity level reading on the sound meter is 82 dB . Calculate in, W m ⁻² , the intensity of the sound at the meter.	ine
			[3 ma	rks]
			intensity =W	m^{-2}

0 2 . 4	The sound intensity meter is 2.0 $\ensuremath{\mathrm{m}}$ from the source which is emitting sound equally in all directions.		
	Calculate the power emitted by the source. [2 marks]		
	power = W		
	Turn over for the next question		

0 3	Positron Emission Tomography (PET) and ultrasound scans are both used in medical diagnosis. Compare the quality of the information obtained from these scans in terms of:
	 patient safety and convenience information available to the doctor from the images. [6 marks]

0 4 . 1	Explain why the effective half-life of a radionuclide in a biological system is always less than the physical half-life. [2 marks]
0 4 . 2	The physical half-life of a radionuclide is 20 days. The nuclide was administered to a patient. Initially the corrected count rate at the patient's body was 2700 counts $\rm s^{-1}$. Five days later, the corrected count rate at the same place on the patient was 1200 counts $\rm s^{-1}$.
	Calculate the biological half-life of the nuclide. [4 marks]
	biological half-life = days

0 4 . 3 Table 1 gives the properties of two radionuclides.

Table 1

	Technetium 99 m	lodine 131
emitted radiation	gamma	beta [⁻] and gamma
half-life / hours	6.0	190
energy of gamma ray / keV	140	610

By considering information in Table 1 suggest which of these nuclides is suitable for use as a tracer in medical diagnosis.		
Suitable for use as a tracer in medical diagnosis.	[4 marks]	

END OF QUESTIONS

Copyright @ 2014 AQA and its licensors. All rights reserved.